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Guidelines for calibration in analytical
chemistry
Part 2. Multispecies calibration

(IUPAC Technical Report)

Abstract: Calibration in analytical chemistry refers to the relation between sample
domain and measurement domain (signal domain) expressed by an analytical
function x = fs(Q) representing a pattern of chemical species Q and their amounts
or concentrations x in a given test sample on the one hand and a measured func-
tion y = f(z) that may be a spectrum, chromatogram, etc. 

Simultaneous multispecies analyses are carried out mainly by spectroscopic
and chromatographic methods in a more or less selective way. For the determina-
tion of n species Qi (i = 1, 2…n), at least n signals must be measured which should
be well separated in the ideal case. In analytical practice, the situation can be dif-
ferent.
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LIST OF SYMBOLS

N Number of species
M Number of signal values (absorbances) used for calibration
P Number of calibration standards (mixtures used for calibration)
Qi Chemical species (elements, ions, compounds), i = 1 ... n
xi Amount (concentration) of species Qi; i = 1 ... n
aij Calibration coefficients (regression coefficients, sensitivity coefficients), i = 1, ..., n,

j = 1, ..., m
zj Signal positions, e.g., wavelengths at which signal absorbances yj are measured, j =

1, ..., m
yj Signal absorbances at the signal positions zj, j = 1, ..., m
ej Uncertainties (errors) of the actual y-measurement, j = 1, ..., m

Matrices are written in bold italic type, and in capital (upper-case) letters, except for column ma-
trices (column vectors), which are printed in small (lower-case) letters, and scalars, which are written
in italic type. Transposed matrices are indicated by superscript T; the transpose of a column matrix is a
row matrix. Estimates of matrices, vectors (row or column matrices), or scalars are characterized by ^;
e.g., x̂ is the estimate of vector x.
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1. INTRODUCTION

Calibration in analytical chemistry refers to the relation between sample domain and measurement do-
main (signal domain) expressed by an analytical function x = fs(Q) representing a pattern of chemical
species Q and their amounts or concentrations x in a given test sample on the one hand (see Fig. 1, left-
hand side) and a measured function y = f(z) that may be a spectrum, chromatogram, etc. (Fig. 1, right-
hand side).

Simultaneous multispecies analyses are carried out mainly by spectroscopic and chromato-
graphic methods in a more or less selective way. For the determination of n species Qi (i = 1, 2…n), at
least n signals must be measured, which should be well separated in the ideal case. In analytical prac-
tice, the situation can be different as shown in Fig. 2 (b) and (c) where an illustration is given only for
a detail out of the signal domain of Fig. 1, right.

In case (a), each species can be calibrated and evaluated independently from the other. In that
fully selective case, the following equation system (1) corresponds to the matrix A in eq. 3:

y1 = a10 + a11x1 + e1
y2 = a20 + a22x2 + e2 (1)
�
ym = am0 + amnxn + em

where the number of measured signal absorbances usually is equal to the number of species, m = n. On
the other hand, case (b), in which neighboring signals overlap to a certain degree, can be handled by
means of multiple linear calibration when the absorbances yi are additive and related signal maxima can
be measured for each species:

y1 = a10 + a11x1 + a12x2 + … a1nxn + e1
y2 = a20 + a21x1 + a22x2 + … a2nxn + e2 (2a)
�
ym = am0 + am1x1 + am2x2 + … amnxn + em

or, in matrix form,

y = Ax + e (2b)

When the preconditions mentioned above are valid, the multispecies system can be calibrated
with a high degree of confidence. The uncertainties ei include both deviations from the model and ran-
dom errors (noise).

In the case of strongly overlapped signals, see (c) in Fig. 2, multiple linear calibration cannot be
used with validity for the following reasons.
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Fig. 1 Relationship between sample domain and signal domain in the case of elemental analysis.



(i) In real analytical systems, not all the sample species are known. In such cases, an alternative pos-
sibility may be the inverse calibration model of eq. 2b

x = Ya + ex (6)

where a may be a spectral matrix with m given wavelengths for n species mixtures in which other
variations like baseline effects must also be included. The vector of sensitivity coefficients can be
estimated by

â = (YTY)–1YTx (7)

(ii) In principle, for spectra like (c), multicollinearities have to be expected. That means that over-
lapping signal curves and consequently the resulting sum curve are correlated and the measured
absorbances at the respective wavelengths are not independent from each other. Therefore, eq. 7
becomes unstable and other methods of estimation of a-values must be used. These methods use
overdetermined equation systems as their basis, such as

K. DANZER et al.
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Fig. 2 Evaluation of multispecies analysis in different cases of signal relations [1]: well-separated (a), moderately
overlapped (b), and strongly overlapped (c) in form of spectra (left) and relevant matrices 3–5 (right); Q1, Q2 , Q3
different species (analytes), z1, z2, z3 wavelengths at which the intensities y1, y2, y3 are measured.



(8)

instead of eq. 5. The number of wavelengths (sensors, detecting channels), m, is usually much higher
than the number of species n (here, n = 3). Estimation of the coefficients is then carried out by multi-
variate calibration. 

Depending on whether the spectra Y are calibrated as dependent on concentrations X or con-
versely, on different methods of multispecies calibration, see Fig. 3, can be used.

2. CLASSICAL MULTIVARIATE CALIBRATION

Classical multivariate calibration represents the transition of common single species analysis from one
dependent variable (measured value, or measurand) to m dependent variables, e.g., wavelengths or sen-
sors which can be simultaneously included in the calibration model. It is possible to determine n ≥ 1
species in the analytical system. The classical linear calibration [2] is therefore represented by the gen-
eralized matrix relation

Y = X A (9)

where Y is the (p × m)-matrix of dependent variables (e.g., absorbances at m wavelengths or responses
at m sensors), X is the (p × n)-matrix of independent variables (e.g., concentrations of n species), and
A is the (n × m)-matrix of the calibration coefficients, often called “sensitivity matrix” [3–5]; p is the
number of calibration standards (mixtures), which is identical with the number of spectra or similar
measurements. The rows of the matrix correspond to the spectra of the pure species, which can be di-
rectly measured or indirectly estimated.

Direct calibration can be applied when the calibration coefficients are known, otherwise—in the
case of indirect calibration—the calibration coefficients are computed by means of experimentally es-
timated spectra-concentrations relations.

Classical calibration procedure can only be applied when all the species that contribute to the
shape of the spectra are known and can be included into the calibration. Additionally, there is the con-
straint that no interactions between the analytes and other species (e.g., solvent) or effects (e.g., of tem-
perature) should occur.

The analytical values (concentrations) are estimated by

(10)
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Fig. 3 Multivariate calibration methods.
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where A+ is the so-called Moore–Penrose generalized pseudo inverse

A+ = (ATA)–1AT (11)

with the same dimensions (m × p) as the transposed matrix.
In case of baseline shift, the sensitivity matrix in eqs. 9 and 10 must be complemented by a vec-

tor 1:

(12)

Instead of the addition of the 1-vector the calibration data may be centered (yi – y– and xi – x–, re-
spectively). Even if the spectra of the pure species cannot be measured directly then the A-matrix can
be estimated indirectly from the spectra provided that all species of the analytical system are known

Â = (XTX)–1XTY (13)

Note: Instead of the symbol A and the term sensitivity matrix also the symbol K (matrix of cali-
bration coefficients, matrix of linear response constants, and so on) is used. Because of the direct
metrological and analytical meaning of the sensitivities aij in the A-matrix, the term sensitivity
matrix is preferred. 

For inversion of the matrix XTX, it is necessary that a sufficient number of spectra for different
concentration steps have been measured. The concentration vectors must vary independently from each
other. For this reason, experimental design [8] should be used. In the case that the preparation of sam-
ples of defined composition is impossible, then the samples should be selected as representative and as
uncorrelated as possible (natural design [3]).

The prediction of analytical values X according to the classical indirect calibration model follows
eq. 10

X̂ = Y Â (14)

The desired independence between the variables of the different analytical signals corresponds di-
rectly with the selectivity of the analytical system [6,7]. In the case of multivariate calibration, the se-
lectivity is characterized by means of the condition number

cond(A) = �A���A–1� (15)

where �A� is the matrix norm of A and �A–1� the norm of the inverse matrix. The matrix norm of A is
calculated from √λmax, the square root of the largest eigenvalue λmax, and the norm of A–1 from the re-
ciprocal square root of the lowest eigenvalue λmin:

(16)

Equation 14 is valid for exactly determined systems (m = n). In the case of overdetermined sys-
tems, m > n, the condition number is given by

(17)

If systems are well conditioned, the selectivity is expressed by condition numbers close to 1.
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3. UNCERTAINTY IN MULTIVARIATE CALIBRATION

The evaluation is carried out according to eqs. 10 and 14. The prediction of a row vector x of dimen-
sion n from a row vector y of dimension m results from

x = yAT(AAT)–1 (18)

The relative uncertainty for the prediction of the x-values can be estimated by

(19)

where �δy���y� is the relative uncertainty of the y-values (error of measurement) and �δA���A� the rela-
tive uncertainty of the estimation of (modeling error). The condition number is calculated from eqs.
15–17.

4. INVERSE CALIBRATION

The classical direct or indirect calibration is carried out by least squares minimization according to
Gauss. Error-free analytical values x are assumed or at least that the errors in x are very small compared
with those of the y-values [2]. Additionally, all the species in the analytical system must be known and
included in the calibration. If these preconditions are not fulfilled the inverse calibration must be ap-
plied.

The inverse calibration regresses the analytical values (concentrations), x, on the measured val-
ues, y. Although with it a prerequisite of the Gaussian least squares minimization is violated because
the y-values are not error-free, it has been proved that predictions with inverse calibration are more pre-
cise than those with the classical calibration [6]. This holds particularly for multivariate inverse cali-
bration.

In chemometrics, the inverse calibration model is also denoted as the P-matrix model (the di-
mension of P is m × n)

X = Y P (20)

The calibration coefficients are elements of the matrix P, which can be estimated by

P̂ = Y+ � X = (YTY)–1YTX (21)

The analysis of an unknown sample is carried out by multiplication of the measured spectrum y
by the P-matrix

x̂ = yP̂ (22)

In the case that the original variables, the measured values y, are used for inverse calibration, there
are no significant advantages of the procedure apart from the fact that no second matrix inversion has
to be carried out in the analysis step (see eq. 22). On the contrary, it is disadvantageous that the cali-
bration coefficients (elements of the P-matrix) do not have any physical meaning because they do not
reflect the spectra of the single species. In addition, multicollinearities may appear which can make in-
version of the Y-matrix difficult (see eq. 21).

On the other hand, when latent variables instead of the original variables are used in inverse cal-
ibration then powerful methods of multivariate calibration arise which are frequently used in multi-
species analysis and single species analysis in multispecies systems. These so-called “soft modeling
methods” are based, like the P-matrix, on the inverse calibration model by which the analytical values
are regressed on the spectral data:

X = Y B (23)
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Where B is the (m × n)-matrix of calibration coefficients, in concrete terms the matrix of B-coef-
ficients. In contrast to the P-matrix, not all the dimensions of the spectra (the Y-matrix) are used, but
only those that are significant are realized by certain principal components. Therefore, the estimation
of the matrix of B-coefficients can be carried out by PCR (principal component regression) or PLS (par-
tial least squares) regression.

Both PCR and PLS form latent variables T (principal components, factors) from the original vari-
ables, viz., from the matrix of measured values according to:

Y = T LT + EY (24)

where T is the factor (score) matrix and L the loading matrix with the dimension m × n; EY is the ma-
trix of nonsignificant factors, which is regarded as an error matrix. Additionally, in PLS the matrix of
analytical values (e.g., concentrations) is decomposed in the same way:

X = T QT + EX (25)

PCR and PLS have in common the following steps:

i. Estimation of a weight matrix (eigenvalues) V (from Y in PCR and from Y and X in PLS)
ii. Calculation of the factor matrix T = ZV by means of the standardized variables Z
iii. Calculation of the matrices P and Q according to

PT = T+Y (26)

QT = T+X (27)

In PCR, the calibration coefficients (B-matrix) are estimated column by column according to 

b̂ = V QT (28a)

and

b̂0 = c– – Y
–

b̂ (28b)

The prediction then is carried out by

ĉ = Y b̂ + b̂0 (29)

The significance and nonsignificance of principal components are decided on the basis of the vari-
ance that is explained by each of them. Normally, in analytical methods the main variance is caused by
the analyte concentration. But sometimes properties of the sample, such as moisture or surface rough-
ness, or effects of the measuring procedure such as spectral baselines or scattered light, can exceed the
effect of analyte concentration. Therefore, additional tests should be made as to what degree the prin-
cipal components postulated to be nonsignificant by the software are correlated with the analytical val-
ues. Principal components that are highly correlated with the variable of interest (e.g., concentration)
should be included in the calibration procedure notwithstanding their share in the variance.

In PLS, both the matrices of measured values Y and analytical values X are decomposed accord-
ing to eqs. 24 and 25: Y = T PT + EY and X = T QT + EX and thus relations between spectra and con-
centrations are considered from the outset. The B-matrix of calibration coefficients is estimated by

B̂ = V (PTV)–1QT (30)

Because the Y-matrix and X-matrix are interdependently decomposed, the B-matrix fits better and
is more robust than the calibration using PCR. The evaluation is carried out by eq. 23 according to X̂ =
YB̂. The application of PLS to only one y-variable is denoted as PLS 1. When several y-variables are
considered in the form of a-matrix, the procedure is denoted PLS 2 [12].
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5. ERROR DIAGNOSIS AND VALIDATION

The reliability of multispecies analysis has to be validated according to the usual criteria: selectivity,
accuracy (trueness and precision), confidence and prediction intervals and, calculated from these,
multivariate critical values and limits of detection. In multivariate calibration, collinearities of vari-
ables caused by correlated concentrations in calibration samples should be avoided. Therefore, the
composition of the calibration mixtures should not be varied randomly, but by principles of experi-
mental design [8].

5.1 Selectivity

In general, selectivity of analytical multispecies systems [9] can be expressed qualitatively and esti-
mated quantitatively according to a statement of Kaiser [4] and advanced models [5]. In multivariate
calibration, selectivity is mostly quantified by the condition number; see eqs. 15–17. Unfortunately, the
condition number does not consider the concentrations of the species and gives therefore only an aid to
orientation of maximum expectable analytical errors. Inclusion of the concentrations of calibration stan-
dards into selectivity models makes it possible to derive multivariate limits of detection [10–12].

5.2 Precision

The uncertainty of calibration and prediction of unknown concentrations are expressed by the standard
error of calibration (SEC), defined as:

(31)

and the standard error of prediction (SEP), defined as:

(32)

where yi
(true,cs) are the true values of the calibration samples (standards), yi

(true,ts) the true values of test
samples with which the prediction power independently is estimated, and yi

(calc) are the respective
y-values calculated by the model.

Another measure for the precision of multivariate calibration is the so-called PRESS value (pre-
dictive residual sum of squares) [13], defined as:

(33)

It can be calculated as usual for SEP (see eq. 32) by use of test samples. It is also possible to es-
timate the PRESS value on the basis of standard samples only applying cross-validation by means of
the so-called hat matrix H [12,13]:

H = X(XTX)–1XT (34)

The n × n hat matrix transforms the vector of the measured y-values to the vector of the estimated
ŷ-values. An element hij of the hat matrix is calculated by

hij = xi
T (XTX)–1xj (35)
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From the elements of the hat matrix, some important relations can be derived, e.g., the rank of the
X-matrix from the sum of the significant diagonal elements of the hat matrix:

(36)

(the rank of the hat matrix is equal to its trace) and the residuals

ê = y – ŷ = y – X(XTX)–1XTy = [I – X(XTX)–1 XT]y = [I – H]y (37)

The residuals can be calculated from a given set of calibration samples in a different way. Cross-vali-
dation is an important procedure to estimate a realistic prediction error like PRESS. The data for k sam-
ples are removed from the data matrix and then predicted by the model. The residual errors of predic-
tion of cross-validation in this case are given by

(38)

The PRESS value of cross-validation is given by the sum of all the k variations:

(39)

Prediction limits for the estimation of an unknown concentration xi can be calculated. The calculation
depends on the specific multivariate calibration model:

(40)

where sx is the standard deviation of prediction estimated from

(41)

tα,f is the Student-t statistic for f degrees of freedom at the α confidence level. The variance sx
2 depends

on the number of sensors or wavelengths, m, the number of species, n, the number of parameters p and
a factor Λ, which takes the form:

� = (BTB)-1 (42a)

in the case of classical multivariate calibration. For inverse calibration,

� = 1 + yo
T(YTY)-1 yo (42b)

and for cross-validation when the leverage values are applied in calibration,

Λ = 1 + hkk (42c)

5.3 Trueness 

Absence of systematic errors can be tested traditionally by means of recovery functions [14]. For this
reason, the concentration estimated by the model, ĉ, is compared with the true concentration value, c,
by a regression model:

ĉ = α + β c (43)
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where c can be the known values of an independent set of test samples or reference values estimated on
the same samples by means of an independent method, which yields true values as is well known. The
regression coefficients have to be α = 0 and β = 1, where values outside of the confidence interval ±∆α
indicate additive (constant) systematic errors and values exceeding the confidence interval 1 ± ∆β up-
wards or downwards show proportional systematic errors. By means of recovery studies, both accuracy
can be tested and precision can be estimated.
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